Let f : [a, b] → R be a continuous function on the closed interval [a, b], and differentiable on the open interval (a, b), where a < b. Then there exists some c in (a, b) such that
The mean value theorem is still valid in a slightly more general setting. One only needs to assume that f : [a, b] → R is continuous on [a, b], and that for every x in (a, b) the limit
Note that the theorem, as stated, is false if a differentiable function is complex-valued instead of real-valued. For example, define f(x) = eix for all real x. Then
The mean value theorem is still valid in a slightly more general setting. One only needs to assume that f : [a, b] → R is continuous on [a, b], and that for every x in (a, b) the limit
Note that the theorem, as stated, is false if a differentiable function is complex-valued instead of real-valued. For example, define f(x) = eix for all real x. Then
- f(2π) − f(0) = 0 = 0(2π − 0)
No comments:
Post a Comment